
Analysis of the Extensibility of FPGA Reverse Engineering

Soyeon Choi, Yunjin Noh, Dohun Kim, and Hoyoung Yoo

Dept. of Electronics Engineering, Chungnam National University

{sychoi.cas, yjnoh.cas, dhkim21.cas@}gmail.com, hyyoo@cnu.ac.kr

Abstract

The process of transmitting the bitstream from

external memory in SRAM-based FPGA is

vulnerable to attacks such as reverse engineering.

The previous FPGA reverse engineering primarily

focus on low-end FPGAs, supported by Xilinx ISE.

This is because ISE provides readable netlists, which

are essential data in reverse engineering. However,

Vivado does not offer textual netlists, making it is

difficult to reverse engineer the FPGAs supported by

Vivado. In this paper, we propose a method to

generate textual netlists in Vivado. According to

experimental results, the XDLRC and XDL generated

in Vivado match 99% and 75% with those generated

in ISE, respectively.

Keywords: Reverse Engineering, Xilinx, VIVADO,

ISE, XDL, XDLRC

1. Introduction

AMD Xilinx and Intel Altera FPGAs demonstrate

the highest market share in the SRAM-based FPGA

industry [1]. FPGA chip manufacturers typically

provide EDA tools to support circuit synthesis and

implementation on FPGA chips, with Xilinx offering

two such tools: ISE Design Suite (ISE) for low-end

FPGAs, and VIVADO Design Suite (Vivado) for the

latest high-end FPGAs.

However, SRAM-based FPGAs have a critical

drawback, which is that they require external

memory since their internal memory gets erased

when power is cut off [2]. The process of

transmitting the circuit's netlist in bitstream format

from external memory during power-up in FPGA

systems makes it vulnerable to malicious attacks like

reverse engineering [3-4].

Presently, existing FPGA reverse engineering

tools primarily focus on Xilinx's low-end FPGAs,

supported by Xilinx ISE. This preference stems from

Xilinx ISE provision of readable text-based XDLRC

(Xilinx Design Language Routing Configurable

logic) and XDL (Xilinx Design language) [5], which

are essential for reverse engineering. Note that,

XDLRC is a file describing all available hardware

resources within the FPGA and XDL is the text-

based netlist on the FPGA. When using ISE,

XDLRC and XDL are generated by only one Tcl

command ‘xdl’. However, since Vivado does not

support XDL and XDLRC, reverse engineering is at

a fundamental level. Consequently, this paper

proposes a method to generate XDLRC and XDL in

Vivado, similar to those in ISE, to extend reverse

engineering technology.

2. Netlist generation in Vivado

2.1. XDLRC generation

XDLRC contains the information for all tiles in

the FPGA including PLP (programmable logic point),

get_tiles

get_sites -of_objects [get_tiles t]

get_site_pins -of_objects [get_sites s]

Select tile (t)
(Start: t = 0)

Select site (s)
(Start: s = 0)

s == sMAX

get_wires -of_objects [get_tiles t]

get_pips -of_objects [get_tiles t]

Y

N

s = s + 1

XDLRC file (t)

t == tMAX

t = t + 1

Open design

get_property TILE_TYPE [get_tiles t]

get_site_pins -of_objects [get_sites -filter
{SITE_TYPE == sTYPE}]

Select SITE_TYPE (sTYPE)
(Start: sTYPE = 0)

get_property SITE_TYPE [get_sites s]

get_site_pips -of_objects [get_sites -filter
{SITE_TYPE == sTYPE}]

get_bels -of_objects [get_sites -filter
{SITE_TYPE == sTYPE}]

sTYPE == sTYPE,MAX

Y

Y

N

N

sTYPE = sTYPE + 1

T
ile

 r
e

so
u

rc
e

p
a

rt
P

ri
m

it
iv

e
_d

e
fs

 p
a

rt

Figure 1. Flow chart to generate XDLRC in

Vivado

PIP (programmable interconnect point), and PDP

(programmable data point).

In Vivado, there is no Tcl command like ‘xdl’ to

generate an XDLRC. However, by utilizing the Tcl

commands supported by Vivado, it is possible to

obtain information about FPGA hardware resources

and create an XDLRC. Figure 1 illustrates the

process of generating an XDLRC file in Vivado as a

flowchart with Tcl commands. To extract the

information of tiles, the process is repeated for all

tiles. To obtain the internal structure, the process of

discovering internal site details is repeated for each

site type.

2.2. XDL generation

XDL represents the netlist of the target circuit

which implemented on FPGA. To generate an XDL

file in Vivado, several Tcl commands that allow

obtaining the necessary information, like with

XDLRC, should be used. To obtain the necessary

information for the XDL, Tcl commands in Fig. 2 are

required. Unlike XDLRC, only used components

must be extracted, so each command is required to

use the -filter {IS_USED} option. Figure 2

represents the flowchart of the XDL generation

process in Vivado. It involves obtaining information

about the design part, followed by iterating through

the process of obtaining all the necessary information

about cells and nets required for design

implementation for instance and net part.

3. Analysis of files

In this paper, experiments are conducted using the

Artix-7 100T device with a speed grade of -1 and the

csg324 package. ISE Design Suite version 14.7 and

Vivado Design Suite version 2020.2 are employed

for both XDL and XDLRC generation.

3.1. Comparison of XDLRC

When comparing XDLRCs generated for the

same FPGA using two EDA tools, the number and

names of tiles always remain consistent as long as

the FPGA device is the same. However, the ‘conn’s

which representing the hard-wired connection

between tiles or elements are not extracted by

Vivado. However, for sites that include as PLPs or

PDPs, the structures are same in both ISE and

Vivado. In terms of PIPs, the number of PIPs

confirmed in ISE and Vivado are 40,375,035 and

40,313,010, respectively. In Vivado, 62,025 PIPs are

not recognized. Each of them has only one

connection, linking a start wire to an end wire.

Figure 3 illustrates the internal structure of a

input/output interface (IOI) tile with results obtained

from both ISE and Vivado. In Fig. 3, the components

find_top

get_cells

get_tiles -of_objects
[get_sites -of_objects [get_cells c]]

Select cell (c)
(Start: c = 0)

get_site_pips -of_objects
[get_sites -of_objects [get_cells c]] -filter {IS_USED}

c = c + 1

XDL file (t)

c == cMAX

Open design

version

get_property SITE_TYPE
[get_sites -of_objects [get_cells c]]

Y

N

In
st

an
ce

 p
ar

t
N

et
 p

ar
t

get_parts -of_objects [get_design]

get_sites -of_objects [get_cells c]

Select net (n)
(Start: n = 0)

get_pips -of_objects [get_nets n]

n = n + 1

n == nMAX

get_pins -of_objects [get_nets n]

N

get_nets

Y

D
es

ig
n

 p
ar

t

Figure 2. Flow chart to generate XDL in

Vivado.

 1:

 2:

 3:

 4:

 5:

 6:

 7:

 8:

 9:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

22:

23:

24:

25:

26:

27:

28:

30:

31:

32:

33:

34:

35:

36:

37:

38:

39:

40:

41:

42:

43:

44:

Tile resource part

Primitive_defs part

Summary part

===

(xdl_resource_report v0.2 xc7a100tcsg324-3 artix7

* Tile Resources *

(tiles 209 148

 (tile 1 1 LIOI3_SING_X0Y199 LIOI3_SING 3

 (primitive_site OLOGIC_X0Y199 OLOGICE3 internal 33

 (pinwire CLK input IOI_OLOGIC0_CLK)

 (pinwire D2 input IOI_OLOGIC0_D2)

 (pinwire D1 input IOI_OLOGIC0_D1)

)

 (wire IOI_CLK1_0 3

 (conn L_TERM_INT_X2Y207 TERM_INT_CLK1)

 (conn IO_INT_INTERFACE_L_X0Y199 INT_INTERFACE_CLK1)

 (conn INT_L_X0Y199 CLK_L1)

)

 (wire LIOI_T0 1

 (conn LIOB33_SING_X0Y199 IOB_T0)

)

 (pip LIOI3_SING_X0Y199 IOI_BYP6_0 -> IOI_IDELAY0_CINVCTRL)

 (pip LIOI3_SING_X0Y199 IOI_BYP7_0 -> LIOI3_IDELAY0_IFDLY2)

 (pip LIOI3_SING_X0Y199 IOI_CLK0_0 -> IOI_ILOGIC0_CLKDIV)

)

)

(primitive_defs 86

(primitive_def OLOGICE3 33 70

(pin D2 D2 input)

(pin D1 D1 input)

(pin OQ OQ output)

(element OQUSED 2

(pin OUT output)

(pin 0 input)

(cfg 0)

(conn OQUSED OUT ==> OQ OQ)

(conn OQUSED 0 <== OMUX OUT)

)

)

)

* Summary *

(summary tiles=30932 sites=28963 sitedefs=86 numpins=1003381 numpips=40375035)
(a) XDLRC generated in ISE

 1:

 2:

 3:

 4:

 5:

 6:

 7:

 8:

 9:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

22:

23:

24:

25:

26:

27:

28:

29:

30:

31:

* Tile Resources *

(tiles 209 148

(tile LIOI3_SING_X0Y199 LIOI3_SING

 (primitive_site OLOGIC_X0Y199 OLOGICE3

 (pinwire CLK)

 (pinwire D2)

 (pinwire D1)

)

 (wire IOI_CLK1_0)

 (wire LIOI_T0 1

 (pip LIOI3_SING_X0Y199 IOI_BYP6_0->IOI_IDELAY0_CINVCTRL)

(pip LIOI3_SING_X0Y199 IOI_BYP7_0->LIOI3_IDELAY0_IFDLY2)

(pip LIOI3_SING_X0Y199 IOI_CLK0_0->IOI_ILOGIC0_CLKDIV)

)

)

(primitive_defs

(primitive_def OLOGICE3

(pin D2 D2)

(pin D1 D1)

(pin OQ O)

(element OQUSED

(cfg 0)

)

)

)

* Summary *

(Summary tile=30932 site=28551 sitedefs=45 numpins=1003381 numpips=40313010)

Tile resource part

Primitive_defs part

Summary part

(b) XDLRC generated in Vivado

Figure 3. XDLRC generated by (a) ISE and (b)

Vivado.

highlighted in red boxes are showed only in the

XDLRC generated in ISE. The blue boxes in Fig. 3

are extracted components with any EDA tools.

3.2. Comparison of XDL

To generate XDL, an RTL design which describes

the target circuit design is required. In this paper, the

RTL instantiated a 6-input LUT primitive with 6

inputs and 1 output is used as an example design.

When comparing the XDL, as depicted in Fig. 4,

the PLP and PDP used for circuit implementation are

equally extracted from both EDA tools. However, in

the case of PDP, it is expressed as a Boolean

function in ISE and Hexadecimal in Vivado. The

difference between XDL lies in the presence or

absence of dummy cells. In XDL generated in ISE,

additional dummy cells highlighted by red box in Fig.

4 with names are included. In XDL files generated

by Vivado, information about the dummy cells used

for route-through is not provided.

In net part, the pin part of the net is extracted the

same, but some pin names are different, like the

yellow boxes in Fig. 4. In addition, the composition

of the PIP that constitutes the net vary due to the

difference between P&R algorithm of ISE and

Vivado, and in Fig. 4, PIPs expressed in yellow

boxes mean the difference between the net generated

by the two EDA tools.

4. Conclusion

In this paper, we proposed a method for

generating textual netlists in both ISE and Vivado.

By comparing the XDL and XDLRC files using the

proposed method, it is found that 99% and 75 %

match are achieved, respectively. Therefore, it

becomes feasible to extend the applicability of

existing reverse engineering tools cover devices

supported by Vivado through the acquisition of

essential textual netlists.

Acknowledgements

This work was supported by the National Research

Foundation of Korea(NRF) grant funded by the Korea

government(MSIT) (No. 2022R1A5A8026986), Basic

Science Reserarch Program through the National Research

Foundation of Korea (NRF) funded by the Ministry of

Education (2021R1I1A3055806), and Institute of

Information & communications Technology Planning &

Evaluation (IITP) grant funded by the Korea

government(MSIT) (2022-0-01170)

References

[1] S. Wallat, M. Fyrbiak, M. Schlögel and C. Paar, "A

look at the dark side of hardware reverse engineering - a

case study," IEEE 2nd International Verification and

Security Workshop (IVSW), 2017, pp. 95-100

[2] E. De Mulder et al., "Electromagnetic Analysis Attack

on an FPGA Implementation of an Elliptic Curve

Cryptosystem," EUROCON 2005, pp. 1879-1882.

[3] Z. Ding, Q. Wu, Y. Zhang, and L. Zhu, “Deriving an

NCD file from an FPGA bitstream: Methodology,

architecture and evaluation,” Microprocessors

Microsystems-Embedded Hardware Des., vol. 37, no. 3, pp.

299–312, 2013.

[4] T. Zhang, J. Wang, S. Guo and Z. Chen, "A

Comprehensive FPGA Reverse Engineering Tool-Chain:

From Bitstream to RTL Code," in IEEE Access, vol. 7, pp.

38379-38389, 2019.

[5] Hoyoung Yu, et al. "Recent advances in FPGA reverse

engineering." Electronics, vol. 7, no. 10, 2018.

===

design <design_name> <part> <ncd version>;

===

design "lut_6input_0" xc7a100tcsg324-1 v3.2 ,

 cfg "

 _DESIGN_PROP:P3_PLACE_OPTIONS:EFFORT_LEVEL:high

 _DESIGN_PROP::PK_NGMTIMESTAMP:1618248090";

===

instance <name> <sitedef>, placed <tile> <site>, cfg <string> ;

===

inst "O_OBUF" "SLICEL",placed CLBLL_L_X2Y145 SLICE_X0Y145 ,

 cfg " A5FFINIT::#OFF A5FFMUX::#OFF A5FFSR::#OFF A5LUT::#OFF

 A6LUT:LUT6_inst:#LUT:O6=(~A6*(~A1*(~A2*(~A3*(~A4*~A5)))))

 ACY0::#OFF AFF::#OFF AFFINIT::#OFF AFFMUX::#OFF AFFSR::#OFF AOUTMUX::#OFF

 AUSED::0 CLKINV::#OFF COUTMUX::#OFF COUTUSED::#OFF CUSED::#OFF

 PRECYINIT::#OFF SRUSEDMUX::#OFF SYNC_ATTR::#OFF "

 ;

inst "XDL_DUMMY_OLOGIC_X0Y149" "OLOGICE3",placed LIOI3_SING_X0Y149 OLOGIC_X0Y149 ,

 cfg "_NO_USER_LOGIC:: _ROUTETHROUGH:D1:OQ "

 ;

==

net <name> <type>,

outpin <inst_name> <inst_pin>,

inpin <inst_name> <inst_pin>,

pip <tile> <wire0> <dir> <wire1> , # [<rt>]

;

==

net "I5_IBUF" ,

 outpin "I5" I ,

 inpin "O_OBUF" A5 ,

 pip CLBLL_L_X2Y145 CLBLL_IMUX8 -> CLBLL_LL_A5 ,

 pip INT_L_X0Y143 LOGIC_OUTS_L18 -> EE2BEG0 ,

 pip INT_L_X2Y143 EE2END0 -> NN2BEG0 ,

 pip INT_L_X2Y145 NN2END0 -> IMUX_L8 ,

 pip LIOI3_TBYTESRC_X0Y143 IOI_ILOGIC1_O -> IOI_LOGIC_OUTS18_0 ,

 pip LIOI3_TBYTESRC_X0Y143 LIOI_I1 -> LIOI_ILOGIC1_D ,

 pip LIOI3_TBYTESRC_X0Y143 LIOI_IBUF1 -> LIOI_I1 ,

 pip LIOI3_TBYTESRC_X0Y143 LIOI_ILOGIC1_D -> IOI_ILOGIC1_O , # _ROUTETHROUGH:D:O

 ;

net "O" , cfg " _BELSIG:PAD,PAD,O:O",

 ;

net "O_OBUF" ,

 outpin "O_OBUF" A ,

 inpin "O" O ,

 pip CLBLL_L_X2Y145 CLBLL_LL_A -> CLBLL_LOGIC_OUTS12 ,

 pip INT_L_X2Y145 LOGIC_OUTS_L12 -> NW6BEG0 ,

 pip LIOI3_SING_X0Y149 IOI_IMUX34_0 -> IOI_OLOGIC0_D1 ,

 pip LIOI3_SING_X0Y149 IOI_OLOGIC0_D1 -> LIOI_OLOGIC0_OQ , # _ROUTETHROUGH:D1:OQ

 pip LIOI3_SING_X0Y149 LIOI_OLOGIC0_OQ -> LIOI_O0 ,

 ;

===

SUMMARY

Number of Module Defs: 0

Number of Module Insts: 0

Number of Primitive Insts: 8

Number of Nets: 14

===

Design part

Instance part

Net part

Summary part

 1:

 2:

 3:

 4:

 5:

 6:

 7:

 8:

 9:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

22:

23:

24:

25:

26:

27:

28:

29:

30:

31:

32:

33:

34:

35:

36:

37:

38:

39:

40:

41:

42:

43:

44:

45:

46:

47:

48:

49:

50:

51:

52:

53:

54:

55:

56:

57:

(a) XDL files generated in ISE

===

design <design_name> <part> <ncd version>;

===

design "lut_6input_0" xc7a100tcsg324-1 Vivado v2021.2 ,

===

instance <name> <sitedef>, placed <tile> <site>, cfg <string> ;

===

inst "LUT6_inst" "SLICEL" placed CLBLL_L_X2Y145 SLICE_X0Y145

cfg "SLICE_X0Y145/AUSED:0 INIT:64'h0000000000000001"

;

==

net <name> <type>,

pin <inst_name> <inst_pin>,

pip <tile> <wire0> <dir> <wire1> ,

;

==

net "I5_IBUF"

pin LUT6_inst/I5

pin I5_IBUF_inst/O

pip LIOI3_TBYTESRC_X0Y143/LIOI3_TBYTESRC.LIOI_IBUF1->LIOI_I1

pip LIOI3_TBYTESRC_X0Y143/LIOI3_TBYTESRC.LIOI_I1->LIOI_ILOGIC1_D

pip LIOI3_TBYTESRC_X0Y143/LIOI3_TBYTESRC.LIOI_ILOGIC1_D->>IOI_ILOGIC1_O

pip LIOI3_TBYTESRC_X0Y143/LIOI3_TBYTESRC.IOI_ILOGIC1_O->>IOI_LOGIC_OUTS18_0

pip INT_L_X0Y143/INT_L.LOGIC_OUTS_L18->>NN2BEG0

pip INT_L_X0Y145/INT_L.NN2END0->>EL1BEG_N3

pip INT_R_X1Y144/INT_R.EL1END3->>ER1BEG_S0

pip INT_L_X2Y145/INT_L.ER1END0->>IMUX_L2

pip CLBLL_L_X2Y145/CLBLL_L.CLBLL_IMUX2->CLBLL_LL_A2

;

net "O"

pin O_OBUF_inst/O

;

net "O_OBUF"

pin O_OBUF_inst/I

pin LUT6_inst/O

pip CLBLL_L_X2Y145/CLBLL_L.CLBLL_LL_A->CLBLL_LOGIC_OUTS12

pip INT_L_X2Y145/INT_L.LOGIC_OUTS_L12->>NW6BEG0

pip LIOI3_SING_X0Y149/LIOI3_SING.IOI_IMUX34_0->IOI_OLOGIC0_D1

pip LIOI3_SING_X0Y149/LIOI3_SING.IOI_OLOGIC0_D1->>LIOI_OLOGIC0_OQ

pip LIOI3_SING_X0Y149/LIOI3_SING.LIOI_OLOGIC0_OQ->>LIOI_O0

;

===

SUMMARY

Number of Primitive Insts: 8

Number of Nets: 14

===

 1:

 2:

 3:

 4:

 5:

 6:

 7:

 8:

 9:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

22:

23:

24:

25:

26:

27:

28:

30:

31:

32:

33:

34:

35:

36:

37:

38:

39:

40:

41:

42:

43:

44:

45:

46:

47:

Design part

Instance part

Net part

Summary part

(b) XDL files generated in Vivado

Figure 4. XDL generated by (a) ISE and (b)

Vivado.

