Analysis of the Extensibility of FPGA Reverse Engineering

Soyeon Choi, Yunjin Noh, Dohun Kim, and Hoyoung Yoo
Dept. of Electronics Engineering, Chungnam National University
{sychoi.cas, yjnoh.cas, dhkim21.cas@/}gmail.com, hyyoo@cnu.ac.kr

Abstract

The process of transmitting the bitstream from
external ~memory in SRAM-based FPGA is
vulnerable to attacks such as reverse engineering.
The previous FPGA reverse engineering primarily
focus on low-end FPGAs, supported by Xilinx ISE.
This is because ISE provides readable netlists, which
are essential data in reverse engineering. However,
Vivado does not offer textual netlists, making it is
difficult to reverse engineer the FPGAs supported by
Vivado. In this paper, we propose a method to
generate textual netlists in Vivado. According to
experimental results, the XDLRC and XDL generated
in Vivado match 99% and 75% with those generated
in ISE, respectively.

Keywords: Reverse Engineering, Xilinx, VIVADO,
ISE, XDL, XDLRC

1. Introduction

AMD Xilinx and Intel Altera FPGAs demonstrate
the highest market share in the SRAM-based FPGA
industry [1]. FPGA chip manufacturers typically
provide EDA tools to support circuit synthesis and
implementation on FPGA chips, with Xilinx offering
two such tools: ISE Design Suite (ISE) for low-end
FPGAs, and VIVADO Design Suite (Vivado) for the
latest high-end FPGAs.

However, SRAM-based FPGAs have a critical
drawback, which is that they require external
memory since their internal memory gets erased
when power is cut off [2]. The process of
transmitting the circuit's netlist in bitstream format
from external memory during power-up in FPGA
systems makes it vulnerable to malicious attacks like
reverse engineering [3-4].

Presently, existing FPGA reverse engineering
tools primarily focus on Xilinx's low-end FPGAs,
supported by Xilinx ISE. This preference stems from
Xilinx ISE provision of readable text-based XDLRC
(Xilinx Design Language Routing Configurable
logic) and XDL (Xilinx Design language) [5], which
are essential for reverse engineering. Note that,
XDLRC is a file describing all available hardware
resources within the FPGA and XDL is the text-

Open design
[(get_tiles)

Select tile (t) . t=t+1
Start: t = 0]

get_property TILE_TYPE [get_tiles t])
+
(get_sites -of_objects [get_tiles t])

Select site (s) s=s+1
'—

(get_property SITE_TYPE [get_sites s])
+

(get_site_pins -of_objects [get_sites s])

T
Y

(get_wires -of_objects [get_tiles t])
t

(get_pips -of_objects [get_tiles t])

Tile resource part

Srvpe = Stype + 1
— P oTY

(Select SITE_TYPE (Srype)
Start: Spype =0

(get_site_pins -of_objects [get_sites —filter)
{SITE_TYPE == s1y5c}]

part

(get_site_pips -of_objects [get_sites —filter)
{SITE_TYPE == s1ypc}]

Primitive_defs

(get_bels -of_objects [get_sites -filter)
{SITE_TYPE == s1ype}]

Figure 1. Flow chart to generate XDLRC in
Vivado

based netlist on the FPGA. When using ISE,
XDLRC and XDL are generated by only one Tcl
command ‘xdl’. However, since Vivado does not
support XDL and XDLRC, reverse engineering is at
a fundamental level. Consequently, this paper
proposes a method to generate XDLRC and XDL in
Vivado, similar to those in ISE, to extend reverse
engineering technology.

2. Netlist generation in Vivado

2.1. XDLRC generation
XDLRC contains the information for all tiles in
the FPGA including PLP (programmable logic point),

I Open design I
-~ v
(find_top
v
get_parts -of_objects [get_design]
3

(version
~ y

/ (get_cells

I

Select cell (c)
(Start: ¢ = 0)

Design part
()

(N N N A

I c=c+
l—Ct=Ct

¥
get_property SITE_TYPE
et_sites -of objects [get cells ¢

get_tiles -of_objects
et_sites -of_objects [get_cells ¢

(get_sites -of_objects [get_cells c])

Instance part

get_site_pips -of_objects
get_sites -of_objects [get_cells c]] filter {IS_USED]

((get_nets)

I Select net (n)

(Start: n=0)

-
t
2
Py (get_pins -of_objects [get_nets n])
7]
2 ¥

(get_pips -of_objects [get_nets n])

. —— |

Figure 2. Flow chart to generate XDL in
Vivado.

PIP (programmable interconnect point), and PDP
(programmable data point).

In Vivado, there is no Tcl command like ‘xdl’ to
generate an XDLRC. However, by utilizing the Tcl
commands supported by Vivado, it is possible to
obtain information about FPGA hardware resources
and create an XDLRC. Figure 1 illustrates the
process of generating an XDLRC file in Vivado as a
flowchart with Tcl commands. To extract the
information of tiles, the process is repeated for all
tiles. To obtain the internal structure, the process of
discovering internal site details is repeated for each
site type.

2.2. XDL generation

XDL represents the netlist of the target circuit
which implemented on FPGA. To generate an XDL
file in Vivado, several Tcl commands that allow
obtaining the necessary information, like with
XDLRC, should be used. To obtain the necessary
information for the XDL, Tcl commands in Fig. 2 are
required. Unlike XDLRC, only used components
must be extracted, so each command is required to
use the -filter {IS USED} option. Figure 2
represents the flowchart of the XDL generation
process in Vivado. It involves obtaining information
about the design part, followed by iterating through
the process of obtaining all the necessary information

0
+| xa1_x ix7
i Dot RSSO S Mt TS
+ N
i
t

Tile resource part

¢|(tiles 209 148
(tile 1 1 LIOI3 SING X0Y199 LIOI3 SING
(prim ite OLO
i

130 (wire TOT CIKIZ0 3

1a: (conn L TERM_INT X2¥207 TERM INT CLKL)

15: (conn TO_INT_INTERFACE I X0Y199 INT INTERFACE_CLKL)
(conn INT L X0¥199 CLK L1)

)
(wire LIOT_10 1
(conn LIOB33_SING_X0Y199 108_T0)

195 10T_BYPE_0 -> IOI_IDELAY0_CINVCIRL)
199 101 BYP7 0 -> LIOT3_IDELAY0_IFDLY2)
%0199 TOI_CLK0_0 -> IOI_ILOGICO_CLKDIV)

Primitive_defs part

(pin OUT ou
(pin 0 input)
(c£g 0)

(conn OQUSED OUT ==> 00 0Q)
(conn OQUSED 0 <== OMUX OUT)

Summary part

4
FENN
+ | (summary tiles=30932 sites=28963

(a) XDLRC generated in ISE

Tile resource part

101_CLK1_0)
LI0I_T0 1

101_BYP6_0->10T_IDELAYD_CINVCTRL)
01 BYP7 0->LI0I3 IDELAYO IFDLY2)
T0I_CLK0_0->101_ILOGICO_CLKDIV)

Primitive_defs part

Summary part

4
te

H
:|(Summary £i1e=30932 site=28551 sitedefs=45 numpins=1003381 numpips=40313010)

(b) XDLRC generated in Vivado

Figure 3. XDLRC generated by (a) ISE and (b)
Vivado.

about cells and nets required for
implementation for instance and net part.

design

3. Analysis of files

In this paper, experiments are conducted using the
Artix-7 100T device with a speed grade of -1 and the
csg324 package. ISE Design Suite version 14.7 and
Vivado Design Suite version 2020.2 are employed
for both XDL and XDLRC generation.

3.1. Comparison of XDLRC

When comparing XDLRCs generated for the
same FPGA using two EDA tools, the number and
names of tiles always remain consistent as long as
the FPGA device is the same. However, the ‘conn’s
which representing the hard-wired connection
between tiles or elements are not extracted by
Vivado. However, for sites that include as PLPs or
PDPs, the structures are same in both ISE and
Vivado. In terms of PIPs, the number of PIPs
confirmed in ISE and Vivado are 40,375,035 and
40,313,010, respectively. In Vivado, 62,025 PIPs are
not recognized. Each of them has only one
connection, linking a start wire to an end wire.

Figure 3 illustrates the internal structure of a
input/output interface (IOI) tile with results obtained
from both ISE and Vivado. In Fig. 3, the components

Design part

6: _DESIGN_PROP:P3_PLACE OP
DESIGN_PROP: :PK_NGMTIM

S:EFFORT_LEVEL:high
P:1618248090";

instance <name> <sitedef>, placed <tile> <string> ; Instance part

FF ROUTMUX: : §OFF
+#OFF

1 _OLOGIC_X0Y149" "OLOGICE: aced LIOT3_SING X0Y149 OLOGIC_XOY149
cfg "_NO_USER_LOGIC:: _ROUTETHROUGH:D1:0Q "

Net part

45 CLBLL_IMUX8 -> CLBLL_LL A5 ,

pip INT_L_X0Y143 LOGIC_OUTS_L18 E2BEGO ,

Dpip INT_L_X2Y143 EE2ENDO -> NN2BEG
p INT_L_X2Y145 NN2ENDO -> IMUX_|

_ROUTETHROUGH:D:0O

Summary part|

e ————
design <design name> <part> <ncd version>; Design part

: [design "lut_6input 0" xc7al00tcsg324-1 Vivado v2021.2 ,

sitedef>, placed <tile> <site>, cfg <string> ; Instance part

ICEL" placed CLBLL L _X2Y145 SLICE_X0Y145
45/AUSED:0 INIT:64'h0000000000000001"

Net part

@pip CLBLL_L_X2Y145,

net mon
pin O_OBUF_inst/O

c_oursiz

@Pip LIO
@pip LI

®pip LIO 149/L1013

s |4
: |4 SUMMARY

Number of Pri
Number of Nets: 14

(b) XDL files generated in Vivado

Summary part

Figure 4. XDL generated by (a) ISE and (b)
Vivado.

highlighted in red boxes are showed only in the
XDLRC generated in ISE. The blue boxes in Fig. 3
are extracted components with any EDA tools.

3.2. Comparison of XDL

To generate XDL, an RTL design which describes
the target circuit design is required. In this paper, the
RTL instantiated a 6-input LUT primitive with 6
inputs and 1 output is used as an example design.

When comparing the XDL, as depicted in Fig. 4,
the PLP and PDP used for circuit implementation are
equally extracted from both EDA tools. However, in

the case of PDP, it is expressed as a Boolean
function in ISE and Hexadecimal in Vivado. The
difference between XDL lies in the presence or
absence of dummy cells. In XDL generated in ISE,
additional dummy cells highlighted by red box in Fig.
4 with names are included. In XDL files generated
by Vivado, information about the dummy cells used
for route-through is not provided.

In net part, the pin part of the net is extracted the
same, but some pin names are different, like the
yellow boxes in Fig. 4. In addition, the composition
of the PIP that constitutes the net vary due to the
difference between P&R algorithm of ISE and
Vivado, and in Fig. 4, PIPs expressed in yellow
boxes mean the difference between the net generated
by the two EDA tools.

4. Conclusion

In this paper, we proposed a method for
generating textual netlists in both ISE and Vivado.
By comparing the XDL and XDLRC files using the
proposed method, it is found that 99% and 75 %
match are achieved, respectively. Therefore, it
becomes feasible to extend the applicability of
existing reverse engineering tools cover devices
supported by Vivado through the acquisition of
essential textual netlists.

Acknowledgements

This work was supported by the National Research
Foundation of Korea(NRF) grant funded by the Korea
government(MSIT) (No. 2022R1A5A8026986), Basic
Science Reserarch Program through the National Research
Foundation of Korea (NRF) funded by the Ministry of
Education (2021R111A3055806), and Institute of
Information & communications Technology Planning &
Evaluation (IITP) grant funded by the Korea
government(MSIT) (2022-0-01170)

References

[1] S. Wallat, M. Fyrbiak, M. Schlogel and C. Paar, "A
look at the dark side of hardware reverse engineering - a
case study," IEEE 2nd International Verification and
Security Workshop (IVSW), 2017, pp. 95-100

[2] E. De Mulder et al., "Electromagnetic Analysis Attack
on an FPGA Implementation of an Elliptic Curve
Cryptosystem," EUROCON 2005, pp. 1879-1882.

[3] Z. Ding, Q. Wu, Y. Zhang, and L. Zhu, “Deriving an
NCD file from an FPGA bitstream: Methodology,
architecture and evaluation,” Microprocessors
Microsystems-Embedded Hardware Des., vol. 37, no. 3, pp.
299-312, 2013.

[4] T. Zhang, J. Wang, S. Guo and Z. Chen, "A
Comprehensive FPGA Reverse Engineering Tool-Chain:
From Bitstream to RTL Code," in /EEE Access, vol. 7, pp.
38379-38389, 2019.

[5] Hoyoung Yu, et al. "Recent advances in FPGA reverse
engineering." Electronics, vol. 7, no. 10, 2018.

